
Copyright © 2025 by Future Corporation. Public   - 1 -  

リクエストとDB のパフォーマンスを  
Datadog で監視する  

Datadog ユーザ会 #14 @福岡

リクエストとDB のパフォーマンスを
Datadog で監視する

フューチャー株式会社

市川裕也

Copyright © 2025 by Future Corporation. Public   - 2 -  

自己紹介 

 ■ 経歴 

● 2024/07 フューチャー新卒入社 

● 2024/11~ アプリケーションエンジニア@FutureVuls 

■ 名前 : 市川 裕也 

■ 現在主に取り組んでいること  

現在は、主にアプリのパフォーマンス関連の問題に取り組んでいます (SRE と SWE の中間み

たいな...？) 

- DB 実行計画を見て、パフォーマンス問題の原因を特定する 

- ORM に hint 句を導入してパフォ問題解決 

- Datadog を用いてパフォーマンス監視  

Copyright © 2025 by Future Corporation. Public   - 3 -  

アジェンダ  

1. 監視導入前の課題と監視対象の選定 

2. 監視ユースケース① : リクエストのレイテンシ (カスタムメトリクス) 

3. 監視ユースケース② : DB スロークエリ (DBM モニター) 

4. まとめ 

Copyright © 2025 by Future Corporation. Public   - 4 -  

サービスの紹介  

■ どんなサービス？  

⇒ 現在、我々は「FutureVuls」という脆弱性管理

サービスの開発・運用をしています。 

 

■ どんな状況？  

⇒ ユーザが増えてきて、リクエスト数やデータベー

スのサイズが日に日に大きくなっている状況です。 

Copyright © 2025 by Future Corporation. Public   - 5 -  

今年上半期時点での Datadog 使用状況  

今年 2 月ごろに Datadog が導入され、あらゆる調査に APM が大活躍していました。 

一方, 他の機能はあまり使っておらず... といった状況でした。 

←
弊社の棚井も 3 月の
Datadog 会@札幌で発表さ
せていただいています

Copyright © 2025 by Future Corporation. Public   - 6 -  

サービスの状況  

バックエンドは複数のコンテナから構成されています。 

複数のコンテナサービスが、ひとつの DB を見に行っています。 

Copyright © 2025 by Future Corporation. Public   - 7 -  

監視導入前の課題  

ユーザからの問い合わせが来るまで、以下のようなパフォーマンス関連の問題に

気づけない状態でした。  

- 裏で走り続けるプロセスのロック待ちが発生している 

- サービスの特定画面が異様に遅い 

- 特定の時間帯にアクセス負荷が集中している 

 

⇒ ユーザの拡大に伴い、監視して状況を把握する必要が出てきました。  

Copyright © 2025 by Future Corporation. Public   - 8 -  

最初に何を監視対象としたか  

① リクエストのレイテンシ : ユーザ体験に最も直結する指標のため。 

② DB のスロークエリ : パフォーマンス問題の多くが DB 起因だったため + 影響範囲が広

いため 

Copyright © 2025 by Future Corporation. Public   - 9 -  

監視ユースケース ①  

 各リクエストのレイテンシの監視  
 

Copyright © 2025 by Future Corporation. Public   - 10 -  

リクエスト監視で達成したかったこと  

リクエスト監視で達成したかったことは

以下のとおりです: 

■ 各エンドポイントで、どれくらいパフォー

マンスの問題が発生しているかを把握

する 

■ 把握した情報を元に、施策の優先度を

決定する 

ここで発生している  
パフォーマンス問題の  
優先度をつけたい  

Copyright © 2025 by Future Corporation. Public   - 11 -  

アラートの失敗  

最初は、30 秒を超えるリクエストが発生する度にア

ラートが飛ぶようにしたが、アラートが飛びまくりア

ラート疲れを起こしてしまった。 

 

⇒ レイテンシ大なリクエストの数だけ分かれば十分

なことに気づき、「集計して日次で報告」 というスタイ

ルに変更 

↑
当時の私の slack チャンネル

Copyright © 2025 by Future Corporation. Public   - 12 -  

運用方針 

■ 現在の運用方針 : 日次集計  

- 30 秒越えのリクエスト数をリソース毎

に集計するダッシュボードを作る 

- ダッシュボードを日次で slack のチャ

ンネルで共有 

↑
これが日次で流れてく
るイメージです

Copyright © 2025 by Future Corporation. Public   - 13 -  

何を監視対象としたか  

各リクエストから取得できるトレースは以下のような感じです。 

このうち、 http.request の部分のみ抽出して、リソース名毎に監視するようにしました。 

Copyright © 2025 by Future Corporation. Public   - 14 -  

集計の設定方法  

集計には カスタムメトリクス を使用しました。(カスタムメトリクスの採用経緯と注意点につい

ては Appendix を参照) 

 

Q. カスタムメトリクスとは 

A. APMスパンや DBM 等から 自分で作成できるメトリクスのこと。カスタムメトリクスは、メ

トリクス名とタグ値 (ホストタグを含む) のユニークな組み合わせによって識別されま

す。 

cf. https://docs.datadoghq.com/ja/metrics/custom_metrics/  

Copyright © 2025 by Future Corporation. Public   - 15 -  

レイテンシが大きいリクエストのみをAPM スパンから抽出するため、 

以下のようなカスタムメトリクスを作成しました 

- http.request のスパン && 30 秒以上のスパン のみに絞る 

- resource_name で group by する 

①

②

集計の設定方法  

Copyright © 2025 by Future Corporation. Public   - 16 -  

集計導入の before/after  

■ before  

■ × どのリクエストがどれくらい遅いかが分からなかった 

■ × ユーザの問い合わせ以外の指標が存在しなかった 

⇒ 何から対応すれば良いかを決めづらかった 

■ after  

■ 〇 どのリクエストがどれくらい遅いかが継続的 & 定量的に分かるようになった 

� ⇒ 次に取り組むべき課題が明確に  

■ 〇 開発メンバに、レイテンシが大きいリクエストについて共有できるようになった 

Copyright © 2025 by Future Corporation. Public   - 17 -  

監視ユースケース②  

 DB のスロークエリ  

Copyright © 2025 by Future Corporation. Public   - 18 -  

DB 監視で実現したかったこと  

① リアルタイムなアラート  

pg_stat_activity を用いた原因特定のため、問題発生にリアル

タイムで気づきたい。 (どのクエリでロック待ちが発生している

かなど) 

後からの調査では原因特定が難しいケースが多かった。 

 

② 過度なスロークエリ検出  

 「異常に時間がかかっているスロークエリ」が検出された時に

アラートが上がってほしい。 (主に、右図赤丸の非同期処理に

よるロック待ちなどを検知したい) 

⇒ 「データベースモニタリングモニター」が最適！

Copyright © 2025 by Future Corporation. Public   - 19 -  

運用方針 

■ 設定方法 

Monitor で「Database Monitoring」を選択し

ます。(詳細仕様は Appendix 参照) 

その後の設定は右のとおり 

↓ 

スロークエリが検知された際にアラートが飛

ぶようになります。 

■ 設定方針 

30 分以上かかっているクエリのみを検出

する設定としました。 

(∵ アラート疲れを起こさないようにするた

め) 

Copyright © 2025 by Future Corporation. Public   - 20 -  

アラート導入の before/after  

■ before  

■ × DB で発生している問題に気づけず、調査が後回しになってしまっていた 

■ after  

■ 〇 問題のあるクエリに即時で気づけるようになり、リアルタイムな状況を調査しやすく

なった。 

■ 〇 閾値を大きめ (30分) に設定したことで、アラート疲れを起こさず、本当にヤバいクエ

リに絞って調査を行えるようになった。 

Copyright © 2025 by Future Corporation. Public   - 21 -  

まとめ 

監視対象 やりたいこと 運用 導入後

① : リクエストの
レイテンシ

各エンドポイントで、どれくらい
パフォーマンスの問題が発生
しているかを把握する ⇒ 優先
度付け

カスタム
メトリクスを
日次集計

以下が可能になった
- メンバーへの共有
- 定量的な傾向を掴む

② : DB の
スロークエリ

リアルタイムで問題に気づきた
い (その場で
原因調査したいため)

DBM
モニターで
アラート

その場で原因調査しにいけ
るようになった

● やりたいことに合わせた監視方法を選択することで、アラート疲れを起こさず必要

な情報を取得・共有できる 

● 「リアルタイム性が必要か」は、重要な考慮ポイント (必要ないなら日次集計で OK) 

● DB モニタリングモニター、便利 

Copyright © 2025 by Future Corporation. Public   - 22 -  

まとめ 

ご清聴いただき  

ありがとうございました  

Copyright © 2025 by Future Corporation. Public   - 23 -  

Appendix : なぜカスタムメトリクスを使用したか  

A. 長期間の推移も見たかったから  

実は、日次集計のみであれば、カスタムメトリ

クスを使用する必要はありませんでした。

(ダッシュボードで直接先ほどの条件を指定す

れば良いだけ) 

しかし、メトリクス化することで、右図のように

長期の傾向を見ることができるようになりま

す。 

推移も見られると嬉しかったため、カスタムメ

トリクスを使用しました。 

Copyright © 2025 by Future Corporation. Public   - 24 -  

Appendix : カスタムメトリクスの料金面の注意点  

カスタムメトリクスは、タグの組み合わせの数に応じて課金が発生します。 

group_by の単位を 3 つ以上設定したりすると、組み合わせ数が爆発して破産する可能

性もあるのでご注意ください。 

 

今回は、以下の 2 点よりほぼ課金が発生しないだろうと判断し、カスタムメトリクスを採

用しました。 

■ group by の単位を resource_name のみに絞った 

■ カスタムメトリクスを取得するリクエストを、30 秒以上かかったもののみに絞った 

Copyright © 2025 by Future Corporation. Public   - 25 -  

Appendix : DBM モニターの内部処理  

PostgreSQL のクエリパフォーマンスを調査したい場合は、以下のいずれかを用いることが多

いです。 

■ pg_stat_activity : 現在走っているクエリの情報を取得できます。リアルタイムの調査に便

利です。 

� クエリの wait 状況、クエリのスタート時間 等  

■ pg_stat_statements : クエリのトータル実行時間などの統計情報を取得できます。  

 

データベースモニタリングモニターで「In Query Samples」を選択した場合、 pg_stat_activity

の情報が用いられるようです。リアルタイムな情報を用いてアラートを上げてくれるはとても

嬉しいなと感じました。 

 (こちらの仕様については、サポートの方にお伺いしました。この場を借りて感謝を申し上げ

ます。) 

